学术活动

当前位置是: 首页 -> 学术活动 -> 学术讲座 -> 其他 -> 正文

Non-and Semi-Parametric Approximation to Bayesian Computation

发布时间:2014-09-23
主讲人: Jiti Gao
主讲人简介:

Monash University

主持人:
讲座简介:

Abstract

This paper proposes a general nonparametric regression approach to the estimation and computation of posterior means. We first consider the case where the samples can be independently drawn from both the likelihood function and the prior density. The samples and observations are then used to nonparametrically estimate posterior mean functions. The estimation method is also applied to estimate the posterior mean of the parameter-of-interest on a summary statistic. Both the asymptotic theory and the finite sample study show that the nonparametric estimate of this posterior mean is superior to existing estimates, including the conventional sample mean.

This paper then proposes some non- and semi-parametric dimensional reduction methods to deal with the case where the dimensionality of either the regressors or the summary statistics is large. Meanwhile, the paper finally discusses the case where the samples are obtained from using an Markov chain Monte Carlo (MCMC) sampling algorithm. The asymptotic theory shows that the rate of convergence of the nonparametric estimate based on the MCMC samples

时间: 2014年9月23日(星期二)4:30pm-6:00pm
地点: 经济楼N303
讲座语言: English
主办单位: 王亚南经济研究院、经济学院
承办单位:
期数: 厦门大学高级计量经济学与统计学系列讲座2014秋季学期第一讲(总第44讲)
联系人信息:
TOP