SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Bayesian Inferences for Beta Semiparametric-Mixed Models to Analyze Longitudinal Neuroimaging Data
Id:2308
Date:20160221
Status:
ClickTimes:
作者
Xiao-Feng Wang, Yingxing Li
正文
Diffusion tensor imaging (DTI) is a quantitative magnetic resonance imaging technique that measures the three-dimensional diffusion of water molecules within tissue through the application of multiple diffusion gradients. This technique is rapidly increasing in popularity for studying white matter properties and structural connectivity in the living human brain. One of the major outcomes derived from the DTI process is known as fractional anisotropy, a continuous measure restricted on the interval (0,1). Motivated from a longitudinal DTI study of multiple sclerosis, we use a beta semiparametric-mixed regression model for the neuroimaging data. This work extends the generalized additive modelmethodology with beta distribution family and random effects. We describe two estimation methods with penalized splines, which are formalized under a Bayesian inferential perspective. The first one is carried out by Markov chain Monte Carlo (MCMC) simulations while the second one uses a relatively new technique called integrated nested Laplace approximation (INLA). Simulations and the neuroimaging data analysis show that the estimates obtained from both approaches are stable and similar, while the INLA method provides an efficient alternative to the computationally expensive MCMC method.
JEL-Codes:
关键词:
Beta distribution; Diffusion tensor imaging; Generalized semiparametric-mixed model; Integrated nested Laplace approximation; Markov chain Monte Carlo; Penalized splines.
TOP