SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Estimating the Conditional Single-Index Error Distribution with A Partial Linear Mean Regression
Id:2279
Date:20160221
Status:
ClickTimes:
作者
Jun Zhang, Zhenghui Feng, Peirong Xu
正文
In this paper,we present amethod for estimating the conditional distribution function of the model error. Given the covariates, the conditional mean function is modeled as a partial linear model, and the conditional distribution function of model error is modeled as a single-index model. To estimate the single-index parameter, we propose a semi-parametric global weighted least-squares estimator coupled with an indicator function of the residuals. We derive a residual-based kernel estimator to estimate the unknown conditional distribution function. Asymptotic distributions of the proposed estimators are derived, and the residual-based kernel process constructed by the estimator of the conditional distribution function is shown to converge to a Gaussian process. Simulation studies are conducted and a real dataset is analyzed to demonstrate the performance of the proposed estimators.
JEL-Codes:
关键词:
Conditional distribution function · Empirical process · Kernel smoothing · Partial linear models · Single-index
TOP