SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis
Id:2286
Date:20160221
Status:
ClickTimes:
作者
Hengjian Cui, Runze Li, Wei Zhong
正文
This work is concerned with marginal sure independence feature screening for ultrahigh dimensional discriminant analysis. The response variable is categorical in discriminant analysis. This enables us to use the conditional distribution function to construct a new index for feature screening. In this article, we propose a marginal feature screening procedure based on empirical conditional distribution function. We establish the sure screening and ranking consistency properties for the proposed procedure without assuming any moment condition on the predictors. The proposed procedure enjoys several appealing merits. First, it is model-free in that its implementation does not require specification of a regression model. Second, it is robust to heavy-tailed distributions of predictors and the presence of potential outliers. Third, it allows the categorical response having a diverging number of classes in the order of O(nκ ) with some κ ≥ 0. We assess the finite sample property of the proposed procedure byMonte Carlo simulation studies and numerical comparison.We further illustrate the proposed methodology by empirical analyses of two real-life datasets. Supplementary materials for this article are available online.
JEL-Codes:
关键词:
Consistency in ranking; Sure screening property; Ultrahigh dimensional data analysis
TOP