SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Spatial Modeling Approach for Dynamic Network Formation and Interactions
Id:2561
Date:20200222
Status:published
ClickTimes:
作者
Xiaoyi Han, Chih-Sheng HSIEH, Stanley I. M. KO
正文
This study primarily seeks to answer the following question: How do social networks evolve over time and affect individual economic activity? To provide an adequate empirical tool to answer this question, we propose a new modeling approach for longitudinal data of networks and activity outcomes. The key features of our model are the inclusion of dynamic effects and the use of time-varying latent variables to determine unobserved individual traits in network formation and activity interactions. The proposed model combines two well-known models in the field: latent space model for dynamic network formation and spatial dynamic panel data model for network interactions. This combination reflects real situations, where network links and activity outcomes are interdependent and jointly influenced by unobserved individual traits. Moreover, this combination enables us to (1) manage the endogenous selection issue inherited in network interaction studies, and (2) investigate the effect of homophily and individual heterogeneity in network formation. We develop a Bayesian Markov chain Monte Carlo sampling approach to estimate the model. We also provide a Monte Carlo experiment to analyze the performance of our estimation method and apply the model to a longitudinal student network data in Taiwan to study the friendship network formation and peer effect on academic performance. Supplementary materials for this article are available online.
JEL-Codes:
关键词:
Bayesian; Dynamic network formation; Latent variable; Peer effects; Spatial dynamic panel data model
TOP