SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Feature Selection for Varying Coefficient Models with Ultrahigh Dimensional Covariates
Id:2212
Date:20131205
Status:published
ClickTimes:
作者
Jingyuan Liu, Runze Li, Rongling Wu
正文
This paper is concerned with feature screening and variable selection for varying coefficient models with ultrahigh dimensional covariates. We propose a new feature screening procedure for these models based on conditional correlation coefficient. We systematically study the theoretical properties of the proposed procedure, and establish their sure screening property and the ranking consistency. To enhance the finite sample performance of the proposed procedure, we further develop an iterative feature screening procedure. Monte Carlo simulation studies were conducted to examine the performance of the proposed procedures. In practice, we advocate a two-stage approach for varying coefficient models. The two stage approach consists of (a) reducing the ultrahigh dimensionality by using the proposed procedure and (b) applying regularization methods for dimension-reduced varying coefficient models to make statistical inferences on the coefficient functions. We illustrate the proposed two-stage approach by a real data example.
JEL-Codes:
关键词:
Feature selection, varying coefficient models, ranking consistency, sure screening property.
TOP