SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Detecting Misspecifications in Autoregressive Conditional Duration Models and Non-negative Time-series Processes
Id:2120
Date:20131014
Status:published
ClickTimes:
作者
Yongmiao Hong, Yoon-Jin Lee
正文
We develop a general theory to test correct specification of multiplicative error models of non-negative time-series processes, which include the popular autoregressive conditional duration (ACD) models. Both linear and nonlinear conditional expectation models are covered, and standardized innovations can have time-varying conditional dispersion and higher-order conditional moments of unknown form. No specific estimation method is required, and the tests have a convenient null asymptotic N(0,1) distribution. To reduce the impact of parameter estimation uncertainty in finite samples, we adopt Wooldridge’s (1990a) device to our context and justify its validity. Simulation studies show that in the context of testing ACD models, finite sample correction gives better sizes in finite samples and are robust to parameter estimation uncertainty. And, it is important to take into account timevarying conditional dispersion and higher-order conditional moments in standardized innovations; failure to do so can cause strong overrejection of a correctly specified ACD model. The proposed tests have reasonable power against a variety of popular linear and nonlinear ACD alternatives.
JEL-Codes:
C4; C2.
关键词:
Autoregressive conditional duration; dispersion clustering; finite sample correction; generalized spectral derivative; nonlinear time series; parameter estimation uncertainty; Wooldridge’s Device
TOP