SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Semiparametric Estimation of Partially Varying-Coefficient Dynamic Panel Data Models
Id:2194
Date:20131014
Status:published
ClickTimes:
作者
Zongwu Cai, Linna Chen, Ying Fang
正文
This paper studies a new class of semiparametric dynamic panel data models, in which some of the coefficients are allowed to depend on other informative variables and some of the regressors can be endogenous. To estimate both parametric and nonparametric coefficients, a three-stage estimation method is proposed. A nonparametric GMM is adopted to estimate all coefficients firstly and an average method is used to obtain the root-N consistent estimator of parametric coefficients. At the last stage, the estimator of varying coefficients is obtained by plugging the parametric estimator into the model. The consistency and asymptotic normality of both estimators are derived. Monte Carlo simulations verify the theoretical results and demonstrate that our estimators work well even in a finite sample.
JEL-Codes:
关键词:
Dynamic Panel Data; Varying Coefficients; Nonparametric GMM.
TOP