SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
On Generating Monte Carlo Samples of Continuous Diffusion Bridges
Id:2113
Date:20131014
Status:published
ClickTimes:
作者
Ming Lin, Rong Chen, Per Mykland
正文
Diffusion processes are widely used in engineering, fiance, physics and other fields. Usually continuous time diffusion processes are only observable at discrete time points. For many applications, it is often useful to impute continuous time bridge samples that follow the diffusion dynamics and connect each pair of the consecutive observations. The Sequential Monte Carlo (SMC) method is a useful tool to generate the intermediate paths of the bridge. Often the paths are generated forward from the starting observation and forced in some ways to connect with the end observation. In this paper we propose a constrained SMC algorithm with an effective resampling scheme that is guided by backward pilots carrying the information of the end observation. This resampling scheme can be easily combined with any forward SMC sampler. Two synthetic examples are used to demonstrate the effectiveness of the resampling scheme.
JEL-Codes:
关键词:
Stochastic diffusion equation, Sequential Monte Carlo, Resampling, Priority score, Backward pilot.
TOP