SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
On Mixture Memory GARCH Models
Id:2190
Date:20131014
Status:published
ClickTimes:
作者
Muyi Li, Wai Keung Li, Guodong Li
正文
We propose a new volatility model, which is called the mixture memory GARCH (MM-GARCH) model. The MM-GARCH model has two mixture components, of which one is a short memory GARCH and the other is the long memory FIGARCH. The new model, a special ARCH(∞) process with random coefficients, possesses both the properties of long memory volatility and covariance stationarity. The existence of its stationary solution is discussed. A dynamic mixture of the proposed model is also introduced. Other issues, such as the EM algorithm as a parameter estimation procedure, the observed information matrix which is relevant in calculating the theoretical standard errors, and a model selection criterion are also investigated. Monte Carlo experiments demonstrate our theoretical findings. Empirical application of the MM-GARCH model to the daily S&P 500 index illustrates its capabilities.
JEL-Codes:
关键词:
long memory in volatility, covariance stationarity, mixture ARCH(∞), EM algorithm.
TOP