SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Improvement in Finite Sample Properties of the Hansen-Jagannathan Distance Test
Id:2093
Date:20131014
Status:published
ClickTimes:
作者
Yu Ren, Katsumi Shimotsu
正文
Jagannathan and Wang (1996) derive the asymptotic distribution of the Hansen-Jagannathan distance (HJ-distance) proposed by Hansen and Jagannathan (1997), and develop a specification test of asset pricing models based on the HJ-distance. While the HJ-distance has several desirable properties, Ahn and Gadarowski (2004) find that the specification test based on the HJ-distance overrejects correct models too severely in commonly used sample size to provide a valid test. This paper proposes to improve the finite sample properties of the HJ-distance test by applying the shrinkage method (Ledoit and Wolf, 2003) to compute its weighting matrix. The proposed method improves the finite sample performance of the HJ-distance test significantly.
JEL-Codes:
C13; C52; G12.
关键词:
Covariance matrix estimation; Factor models; Finite sample properties; Hansen-Jagannathan distance; Shrinkage method.
TOP