SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Characteristic Function-Based Testing for Multifactor Continuous-Time Markov Models via Nonparametric Regression
Id:2117
Date:20131014
Status:published
ClickTimes:
作者
Bin Chen, Yongmiao Hong
正文
We develop a nonparametric regression-based goodness-of-fit test for multifactor continuous-time Markov models using the conditional characteristic function, which often has a convenient closed form or can be approximated accurately for many popular continuous-time Markov models in economics and finance. An omnibus test fully utilizes the information in the joint conditional distribution of the underlying processes and hence has power against a vast class of continuous-time alternatives in the multifactor framework. A class of easy-to-interpret diagnostic procedures is also proposed to gauge possible sources of model misspecification. All the proposed test statistics have a convenient asymptotic N(0,1) distribution under correct model specification, and all asymptotic results allow for some data-dependent bandwidth. Simulations show that in finite samples, our tests have reasonable size, thanks to the dimension reduction in nonparametric regression, and good power against a variety of alternatives, including misspecifications in the joint dynamics, but the dynamics of each individual component is correctly specified. This feature is not attainable by some existing tests. A parametric bootstrap improves the finite-sample performance of proposed tests but with a higher computational cost.
JEL-Codes:
关键词:
TOP