SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Working Papers
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Estimating Endogenous Treatment Effect Using High-Dimensional Instruments with an Application to the Olympic Effect
Id:2510
Date:20190710
Status:
ClickTimes:
作者
Wei Zhong, Wei Zhou, Qingliang Fan, Yang Gao
正文
Endogenous treatments are commonly encountered in program evaluations using observational data where the selection-on-observables assumption does not hold. In this paper, we develop a two-stage approach to estimate endogenous treatment effects using high-dimensional instrumental variables. In the first stage, instead of using a linear reduced form regression in the conventional two-stage least squares approach, we propose a new high-dimensional logistic reduced form model with the SCAD penalty to approximate the optimal instrument. In the second stage, we replace the original treatment variable by its estimated propensity score and run a least squares regression to obtain the penalized Logistic-regression Instrumental Variables Estimator (LIVE). We show that the proposed LIVE is root-n consistent to the true average treatment effect, asymptotically normal and achieves the semiparametric efficiency bound. Monte Carlo simulations demonstrate that the LIVE outperforms the traditional TSLS estimator and the post-Lasso estimator for the endogenous treatment effects. Moreover, in the empirical study, we investigate whether the Olympic Games could facilitate the host nation's economic growth using data from 163 countries. The proposed LIVE estimator shows a strong Olympic effect on the host nation's economic growth.
JEL-Codes:
关键词:
TOP