SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Working Papers
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses
Id:2596
Date:20211106
Status:
ClickTimes:
作者
Xuexin WANG
正文
This study proposes new generalized spectral tests for multivariate Martingale Difference Hypotheses, especially suitable for high-dimensionality situations. The new tests are based on the martingale difference divergence covariance (MDD) proposed by Shao and Zhang (2014). It considers block-wise serial dependence of all lags, therefore, is consistent against general block-wise nonparametric Pitman’s local alternatives at the parametric rate n−1/2, where n is the sample size, and free of a user-chosen parameter. In order to cope with the highdimensionality in the sense that the dimension of time series is comparable to or even greater than the sample size, it is pivotal to employ a bias-reduced estimator for each individual MDD in the test statistic. Monte Carlo simulations reveal that the bias-reduced statistic generally performs better than its competitors substantially. Moreover, it is robust to heteroskedasticity of unknown forms and heavy-tails in the data generating processes. We apply our approach to test the efficient market hypothesis on the US stock market, using data sets on the monthly and daily data of portfolios sorted by industry. Our test results provide strong evidence against the efficient market hypothesis with respect to the US stock market at monthly frequency
JEL-Codes:
C12, C22
关键词:
Efficient Market Hypothesis; Generalized Spectral Tests; Nonintegrable Weighting Function; High-dimensionality; Bias Reduction
TOP