SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Working Papers
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Generalized Maximum Entropy Estimation of Discrete Sequential Move Games of Perfect Information
Id:2036
Date:20131014
Status:published
ClickTimes:
作者
Yafeng Wang, Brett Graham
正文
We propose a data-constrained generalized maximum entropy estimator for discrete sequential move games of perfect information. Unlike most other work on the estimation of complete information games, the method we proposed is data constrained and requires o simulation or assumptions about the distribution of random preference shocks. We formulate the GME estimation as a (convex) mixed-integer nonlinear optimization problem which can be easily implemented on optimization software with high-level interfaces such as GAMS. The model is identified with only weak scale and location normalizations. Monte Carlo evidence demonstrates that the estimator can perform well in moderately size samples. As an application we study the location choice of German siblings using the German Ageing Survey.
JEL-Codes:
C01, C13, C35, C51, C72.
关键词:
Game-Theoretic Econometric Models, Sequential-Move Game, Generalized ,Maximum Entropy, Mixed-Integer Nonlinear Programming.
TOP